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The Banach-Tarski paradox is very well known in the mathematical world,
it states that one can decompose a ball A into pieces and use only rigid motions;
mainly translations and rotations; to reconstruct; fr example, two copies of it.
This seems impossible when one thinks of it since rigid motions are supposed
to preserve volume, thus the name of ”paradox” rather than theorem. This is
mainly due to the way one ’decomposes’ the said object. We shall prove the
result in this paper in a pretty elementary way.

1 Some group theory

Definition 1.1 (G-paradoxal, Equi-decomposability). Let G be a group, acting
on a set X, A,B subsets of X.

1. We say that X is paradoxical under the action of G, if there exist pairwise
disjoint subsets A1, . . . An and B1, . . . Bm of A and B, respectively, and
elements g1, . . . gn, h1, . . . hm ∈ G such that

X =

n⊔
i=1

gi(Ai) =

m⊔
j=1

hj(Bj)

2. We say that A and B are equidecomposable, if there exist partitions {Ai},
{Ai} of A and B, respectively, and elements g1, . . . , gn ∈ G such that

A =

n⊔
i=1

Ai, B =

n⊔
i=1

Bi, Bi = gi ·Ai ∀i

One writes A ∼ B.
One notices that in this case, if A is paradoxical, then so is B.

3. We say that a group is paradoxical if it is under its own action by left
multiplication.

Example 1.2. • Every bounded interval of R is R-paradoxical: Consider
an interval [a, b) ⊂ R, c = a+b

2 its center. One sees that

[a, b[= [a, c[ ∪ [c, b[ and [a, c[ ∩ [c, b[= ∅

Consider the isometry group E1 = Isom(R) = {Refa : x 7→ 2x−a, a ∈ R}
that only consist of simple reflexions. E1 acts on R, and one has:

Refa([a, c[) = [a, b[= Refb([c, b[)



• [a, b[∼ [a, b]: Let xn ∈ [a, b] such that x1 = b and let yn ∈ R\ [a, b] ∀n ∈ N.
Consider

g : R→ R
z 7→ z ∀z 6= xn, yn

xn 7→ xn+1 n ≥ 1

y1 7→ b

yn 7→ yn−1 n ≥ 2

g is bijective and one has g([a, b[) = [a, b].

The following result is in the heart of the commotion about this paradox,
and may actually justify the seemingly intuitive ’absurdity’ of such a result:
The use of the axiom of choice.

Lemma 1.3. Let G be a group, acting freely on a set X. then if G is paradoxical,
so is X.

Proof. Let G be paradoxical, {(Ai, gi), i ∈ N}, {(Bj , hj), j ∈ N} realising its
decomposition. As G acts on X, on has the orbit decomposition

X =
⊔
x∈X
Ox

Using the axiom of choice, there exists a choice set M that contains exactly one
element from each orbit. Set G ·M = {g · x/g ∈ G, x ∈M} and let

A′i =
⋃
gi∈Ai

{gi ·M}, B′j =
⋃

hj∈Bj

{hj ·M}

We show that {(A′i, gi), i ∈ N}, {(B′j , hj), j ∈ N} realise the decomposition of
X. Suppose ∃z ∈ A′i ∩B′j 6= ∅

∃x, y ∈M z ∈ (Ai · x)∩ (Bj · y)⇒ (Ai · x)∩ (Bj · y) 6= 0⇒ (G · x)∩ (G · y) 6= 0

⇒ x = y (By choice of M)

Hence

∃gi ∈ Ai,∃hj ∈ Bj such that z = gi · x = hj · x⇒ h−1j gi · x = x

⇒ gi = hj (As the action is free).

Thus Ai ∩Bj 6= ∅ which is impossible. Moreover

n⋃
i=1

gi ·A′i = (

n⋃
i=1

gi ·Ai) ·M = G ·M = X = G ·M = (

n⋃
i=1

hj ·Bj) ·M =

n⋃
j=1

hj ·B′j

which proves the claim.

We will need the following lemma, known as the Ping-pong lemma:



Lemma 1.4 (Ping-pong). [2] Let G be a group acting on a set X, H,K be two
subgroups of G, with |H| ≥ 3, |K| ≥ 2. Suppose G = 〈H ∪K〉 and suppose there
exists non-empty subsets X1, X2 of X with X2 * X1 such that

∀h ∈ H \ {e} h ·X2 ⊂ X1 and ∀k ∈ K \ {e} k ·X1 ⊂ X2

Then
G ∼= H ∗K

Proof. By the universal property of the free product, one has a surjective group
homomorphism (since G is generated by H ∪K)

H ∪K G = 〈H ∪K〉

H ∗K

φ

We show that it is an isomorphism, let ω be a reduced word from the alphabet
of the (disjoint) union H \ {e}tK \ {e}. We need to show that its image under
this isomorphism is not the identity.

• If ω = h1k1h2k2 . . . kn−1hn then

φ(ω) ·X2 = h1k1 . . . kn−1hn ·X2

⊂ h1k1 . . . hn−1kn−1 ·X1

⊂ h1k1 . . . kn−2hn−1 ·X2 (Ping)

⊂ h1k1 . . . hn−3kn−2 ·X1 (Pong)

. . .

⊂ h1 ·X2 ⊂ X1

Since X2 * X1, φ(ω) 6= eG.

• If ω = k1h1k2h2 . . . hn−1kn then for h ∈ H \ {e} : the previous result
shows that hφ(ω)h−1 6= eG and thus φ(ω) 6= eG.

• If ω = h1k1h2k2 . . . hnkn for h ∈ H \ {e, h−1} : the first result shows that
hφ(ω)h−1 6= eG and thus φ(ω) 6= eG.

• If ω = k1h1k2h2 . . . knhn for h ∈ H \ {e, h−1} : the first result shows that
hφ(ω)hn 6= eG and thus φ(ω) 6= eG.



2 Main result

Let E3 := Isom(R3) be the group of isometries acting on the euclidean space
R3. Recall that a (the) free group of rank 2 consists of all words that can be
built from the alphabet {a, b, a−1, b−1}. Note that

F2 := 〈a, b | 〉 ∼= Z ∗ Z

We will show the main result of this paper, which translates in our actual set
of definitions into:

Theorem 2.1 (Banach-Tarski). Every ball B3 ⊂ R3 is E3-paradoxical.

To prove this result we will proceed by showing the following:

1. F2 is paradoxical.

2. F2 ≤ SO3 and F2 acts freely on S2 \D.

3. S2 \D ∼SO3
S2.

4. B3 \ {0} ∼E3 B3.

But before, and in order to understand how, geometrically, this paradoxicality
happens, we will show a funny result that we would like to call, the circle trick :

Theorem 2.2 (The circle trick). Let G = E2, then

S1 \ {pt} ∼G S1

Proof. We identify R2 with C and consider S1 = {z ∈ C | |z| = 1}. Consider σ
to be a counter-clockwise rotation, say by angle 1

5 radians around the origin.

(i.e. the isometry σ : z 7→ e−
1
5 iz). As 2π is irrational, σ(z)n will never coincide

with z. Now consider

A =
⊔
n≥1

{
σn(z) , z ∈ S1

}
and {pt} =

{
ei0 = 1

}
Then,

σn−1(z) 6= σ−1(z) ∀n

Hence, by using the inverse rotation σ−1 : z 7→ e
1
5 iz on the set A and fixing the

rest (i.e. B = (S1 \ {pt}) \ A) one recovers all the points since they are shifted
− 1

5 radian back:

S1 = B tA t {pt} = B t σ−1(A)

S1 \ {pt} = B tA

Hence
S1 \ {pt} ∼G S1



1. F2 is paradoxical.

Consider the following:

A = {anu, u ∈ F2, n > 0}
B = {bnv, v ∈ F2, n > 0}
A′ = {a−nu, u ∈ F2, n > 0}
B′ = {b−nv, v ∈ F2, n > 0}

One clearly sees that

a−1A = {au, bu, b−1u, u ∈ B ∪B−1}
b−1B = {bv, av, a−1v, v ∈ A ∪A−1}

F2 = (A tB) t (A′ tB′ t {e}) and

a−1A t b−1B = F2

aA′ t bB′ t {e} = F2

2. F2 ≤ SO3 and F2 acts freely on S2 \D.

Let h and k be rotations of angle arcos(3/5) that have orthogonal axes,
i.e

h =

 3
5 - 45 0
4
5

3
5 0

0 0 1

 ∈ SO3 and k =

1 0 0
0 3

5
4
5

0 - 45
3
5

 ∈ SO3.

Let H = 〈h〉, K = 〈k〉 be subgroups of SO3, and let G = 〈H ∪K〉. G acts
naturally on R3, while fixing

X =

{(
a

5k
,
b

5k
,
c

5k

)ᵀ

| a, b, c ∈ Z, k > 0

}
We restrict the action of G on X and consider the subspaces

X1 =

{(
3a± 4b

5k
,

4a± 3b

5k
,

c

5k−1

)ᵀ

| a, b, c ∈ Z, k > 0

}
⊂ X

X2 =

{(
a

5k−1
,

3b± 4c

5k
,

4b± 3c

5k

)ᵀ

| a, b, c ∈ Z, k > 0

}
⊂ X

Easy computations shows that{
∀h ∈ H \ {e} h ·X2 ⊂ X1

∀k ∈ K \ {e} k ·X1 ⊂ X2

and

1
1
0

 ∈ X2 \X1

Hence by Lemma 1.4

(F2
∼=)H ∗K ∼= G (≤ SO3)



Now if we consider the action of F2 over S2, every rotation has 2 fixed
points, which are the intersections of its axis with S2, thus it is unfortu-
nately not free and one can not directly use Lemma 1.3. However, one
can make a slight change:
Consider D := {x ∈ S2 | ∃a ∈ F2 : a · x = x}. Then S2 \D is stable under
the action of F2, indeed for ω ∈ S2 \D and x ∈ D if ω(x) ∈ D, then for
a ∈ F2 \ {e}

a · ω(x) = ω(x)⇒ ω−1 · a · ω(x) = x⇒ ω−1 · a · ω = e⇒ a = e

which is impossible, thus we have a free action of F2 on S2 \D.

3. S2 \D ∼SO3
S2.

This step is the core of the proof, basically we will find a way to reproduce
the circle trick (Theorem 2.2) (where one exhibits a point out of S1, and
uses the irrationality of the radius to rebuild the circle without that point)
in a three-dimensional setting. We would like to find a rotation ρ ∈ SO3

that would make the set D ’disappear’. Since D is countably infinite
(and since there are uncountably many lines through the origin in R3) let
x ∈ S2 \ {D∪ -D} and let d = (Ox), rα be the rotation of angle α ∈

[
0, π2

[
and axis d. The key here is finding an angle θ such that no matter how
many times we apply ρ to any element of D we can never land back in D.
For a ∈ D, n ∈ N we define

Aa,n =
{
α ∈

[
0,
π

2

[
| rnα(a) ∈ D

}
, A =

⋃
a∈D

⋃
n≥0

Aa,n

And thus, we want θ ∈
[
0, π2

[
\A which is possible assuming the axiom of

countable choice (that states that the union of countably many countable
sets is countable.) Hence one has that

rnθ (D) ∩D = ∅ and rnθ (D) ∩ rmθ (D) = ∅ ∀m 6= n ∈ N

We define
D =

⊔
n≥0

rnθ (D)

which is clearly disjoint since D, rθ(D), r2θ(D), . . . are. One notices that

D = D
⊔
n≥1

rnθ (D) =
⊔
n≥0

rθr
n
θ (D) = D t rθ(

⊔
n≥0

rnθ (D)) = D t rθ(D)

Finally, one has

S2 = (S2 \D) tD t rθ(D)⇒ S2 \D = (S2 \D) t rθ(D)

Since rθ(D) ∼SO3
D we get

S2 \D ∼SO3
(S2 \D) tD = S2



4. B3 \ {0} ∼E3 B3.

Now choose a circle S that has as missing point the origin of B3. By the
circle trick (Theorem 2.2), we know that

S ∼ S t {0}B3

Hence

B3 \ {0} = B3 \ (S t {0}) t S ∼ B3 \ (S t {0}) t (S t {0}) = B3

Proof of Theorem 2.1. Now we put all the pieces together and prove our result.
As F2 is paradoxical (1), and every subgroup acts on the bigger group (say G)
by left multiplication and without non-trivial fixed points (by inverses), G is F2-
paradoxical, but then G is also G-paradoxical. Thus every group that contains
a free subgroup of index 2 is paradoxical. In particular, SO3 is paradoxical.
By Lemma 1.3, one ’lifts’ the paradoxicality to S2 \D as the action of SO3 is
free (2). Since S2 \D is equidecomposable to S2, S2 is SO3-paradoxical (3):
Here the ’lift’ is used to reproduce the paradoxical decomposition of F2 for S2\D
(in (1), one decomposes F2 into two subgroups, each equidecomposable itself to
F2 and thus producing a ’doubling’ effect)

S2 = S2 \ {D} t {D} ∼ S2 \ {D} t S2 \ {D} t {D}
= S2 \ {D} t S2

∼ S2 t S2

If we consider the radial correspondence

S2 ⊃ A 7−→ A′ =
⋃
a∈A

]0, a] ⊂ B3 \ {0}

One clearly sees that ∀n ∈ N, A,B ⊂ S2

(
⊔
n≥0

An)′ =
⊔
n≥0

A′n, A′ ∩B′ = ∅ ⇔ A ∩B = ∅

This way, the decomposition of S2 yields a decomposition of B3 \ {0} which
makes it paradoxical. Hence, by (4) we get that B3 is paradoxical and

B3 = B3 \ {0} t {0} ∼ B3 \ {0} t B3 \ {0} t {0}
= B3 \ {0} t B3

∼ B3 t B3
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